	practice.
	d as mal
S.	e treated
ınk pages	50, will be t
blank	3 = 50, 1
aining	ritten eg, $42+8 = 5$
e rem	n eg,
s on the	writte
ss lines c	ations
ıl cro	or equ
liagona	and /o
raw di	valuator an
ly dra	evalu
ılsori	al to
wers, compulsorily dr	appe
ers, c	ation, a
answ	ntifica
your	fider
ting	ing of
ımple	eveal
On co	Any re
	2. 8
lote :	
nportant Note	
mpor	

	ſ			Г			Γ	
USN								
ODIT			1	1	ľ			

M.Tech. Degree Examination, June/July 2014 **Real Time Operating Systems**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- Explain briefly the history of embedded systems and write the pseudo code for basic real -1 time service. (08 Marks)
 - Differentiate between preemptive and non preemptive scheduling. (05 Marks)
 - Explain thread safe reentrant function. (07 Marks)
- Write neat diagrams, explain hard real time service utility, isochronal service utility, and best effort service utility. (10 Marks)
 - b. Explain RM – LUB sufficient feasibility test by taking the example of two service.
 - (08 Marks)
 - Calculate the utility of the CPU resource achievable for the task with $T_1=3$, $T_2=5$, $C_1=C_2=1$.
- Explain the worst case execution time of a service. (10 Marks)
 - Explain the following:
 - i) Shared memory
 - ii) ECC memory. (10 Marks)
- Define priority inversion. Mention the three conditions that causes unbounded priority inversion. Explain the solution for unbounded priority inversion. (10 Marks)
 - b. Explain the deadlock and live lock. (10 Marks)
- Explain in brief any three hardware components of a real time embedded system. 5

(10 Marks)

12EC126

- Explain the following:
 - i) Reentrant application libraries
 - ii) Communicating and synchronized applications. (10 Marks)
- Briefly explain the three level of single step debugging in embedded systems. (10 Marks)
- Explain the following:
 - i) Trace ports
 - ii) Power on self test and diagnostics.

(10 Marks)

Describe the basic concept of drill down tuning.

Mention the methods for optimizing code segments.

- (10 Marks) (10 Marks)
- - Compare reliability and availability. Also discuss reliability with an example. (10 Marks)
 - Explain multitasking application by considering the example of digital clock and thermometer that runs on PIC microcontrollers. (10 Marks)